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Abstract ALAL A

An analytical, parametric study of the attenuation dhzz Aze Ass
bending boundary layers or edge effects in balanced ahg A, A
unbalanced, symmetrically and unsymmetrically laminat-
ed thin cylindrical shells is presented for nine contempe;,,, B,,, B,
rary material systems. The analysis is based on the Ilnggr B, Beg
Sanders-Koiter shell equations and specializations to the _
Love-Kirchhoff shell equations and Donnell's equations*’
are included. Two nondimensional parameters are inden-
tified that characterize and quantify the effects of laminaéa
orthotropy and laminate anisotropy on the bending bound-
ary-layer decay length in a very general and encompassthgl °
manner. D111 D12! DlG’

A substantial number of structural design technolodyzz Dae Des
results are presented for a wide range of laminated-cogn;
posite cylinders. For all the laminate constructions Cop- E,
sidered, the results show that the differences betweeh
results that were obtained with the Sanders-Koiter sh@l
equations, the Love-Kirchhoff shell equations, and Dop-
nell’s equations are negligible. The results also show thgt
the effect of anisotropy in the form of coupling between
pure bending and twisting has a neglible effect on the sige
of the bending boundary-layer decay length of the bal-
anced, symmetrically laminated cylinders considered.
Moreover, the results show that coupling between the v&-
ious types of shell anisotropies has a negligible effect &x)
the calculation of the bending boundary-layer decay
length in most cases. The results also show that in soRe @
cases neglecting the shell anisotropy results in undere&i-
mating the bending boundary-layer decay length and @ S, T
other cases it results in an overestimation.
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Primary Symbols
a,, &, &g by, inverted stiffness expressions defined in 7

Appendix C w
,,8,,3,D0, modified inverted stiffness expressions X
defined in Appendix B
E: ysg 1y:9

A, A, nondimensional anisotropy parameters
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laminate membrane stiffnesses

modifed laminate stiffnesses defined in
Appendix B
laminate membrane-bending coupling

stiffnesses

modifed laminate stiffnesses defined in
Appendix B

first-order correction factor for
anisotropy parameter

attenuation or decay lengths
laminate bending stiffnesses

stiffness coefficients
major and minor principal lamina

moduli, respectively
lamina shear modulus

cylinder wall thickness and length
axial and circumferential bending and

twisting stress resultants, respectively
axial, circumferential, and shear

membrane stress resultants, respectively

nondimensional orthotropy parameter

loading function appearing in bending
boundary-layer differential equation
transverse-shear stress resultants

cylinder radius

constant coefficients of bending
boundary-layer differential equation
modified shear stress resultant defined in
Appendix B

strain-energy density

normal-displacement component
axial coordinate of cylinder
attenuation-length tolerance parameter

axial, circumferential, and shear

membrane strains, respectively
circumferential, angular coordinate

axial and circumferential bending and
twisting strains, respectively

constant defining different shell theories
lamina major Poisson’s ratio

lamina fiber angle
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Introduction is sometimes exhibited by balanced, symmetric lami-

. nates.
The term, "bending boundary layer," refers to lo-

calized zones of bending stresses and deformations that !N Ref. 1, an analysis is presented and an expression
appear in practically every type of thin shell structure, for the attenuation or decay length of the bending bound-
Bending boundary layers are caused by edge suppdity layer for a specially _orthotroplc cylinder that is s.ub—_
conditions; by localized mechanical loads, heating, ofcted t0 edges loads, internal pressure, and heating is
cooling; and by abrupt changes in stifiness, such as thgfVen- These equations, and the accompanying results,

caused by a cutout, a crack, or a stiffener. All of thes8'€ based on the linear Love-Kirchhoff shell equations.

effects may be real concerns in a given preliminary deln Ref. 3, an analytical solution that is based on Don-

sign for an advanced aerospace vehicle made of lamindi€ll's simplifications to the linear Love-Kirchhoff shell
ed-composite materials. Thus, it is useful to havéduations is given for fully anisotropic cylinders that are

nondimensional parameters that characterize the effecisPiected to lateral pressure and edge loads. Results that

of shell geometry and laminate orthotropy and anisotroSHoW the effect of laminate anisotropy on the edge mo-

py on the extent of bending boundary layers and that cdR€Nt aré presented for a clamped two-ply shell that is
be used to help guide the development of a design. Fapbjected to internal pressure. In anmon, a discussion
example, an optimal design for a pressure vessel migI‘ﬁ presented tha? suggests that solutions that are bgsed on
be one that exploits the membrane load-carrying actioff®nnell’s equations should be accurate for laminates
of a shell and minimizes zones of local bending stressefat &ré not highly anisotropic. ~An analytical study of
Meaningful nondimensional parameters could be used Q€Nding boundary layers in unbalanced, symmetrically
the preliminary design stage to identify families of lami-/aminated cylinders, that is also based on Donnell's
nates and material systems that exhibit relatively smaffduations, is presented in Ref. 2. The aim of this study

bending boundary layers. Moreover, a meaningful estias to determine a suitable gage section in a laminated-

mate of the size of a bending boundary layer in a shell igomposite tube that is to be used for a material character-

very useful for determining an adequate first-approximalzation test. Results are presented for unidirectional, he-

tion finite-element model for a complex shell structure.i¢@l-wound tubes.

Without a proper understanding of the extent of a bend-  An analytical solution for bending boundary layers
ing boundary layer, it is possible to have a finite-elemenin unbalanced, symmetrically laminated and balanced,
model that could miss a significant part of the structuralnsymmetrically laminated circular cylindrical shells
response in a region where failures are often initiated bthat are subjected to internal pressure and thermal loads
high interlaminar stresses. Furthermore, apriori knowlis presented in Ref. 4. The solution is also based on Don-
edge of the extent of bending boundary layers is useful inell’s linear equations and numerical results are present-
determining the instrumentation locations in structuraled for filament-wound cylinders made of heat-treated
verification tests or in material characterization tédts.  carbon-carbon material. A study that focuses mainly on
addition, knowledge of how laminate construction af-prebuckling deformations, with bending boundary lay-
fects the extent of a bending boundary layer is useful foérs, in homogeneous, orthotropic and unsymmetrically
understanding how nonlinear prebuckling deformationdaminated cross-ply cylinders that are subjected to axial-
affect the buckling behavior of cylindrical shells. compression loads and lateral pressure loads is presented
in Ref. 5. The effects of the bending boundary layers on
boundary layers in right-circular, cylindrical shell struc- the buckling response are examined for several laminate

tures made of orthotropic or anisotropic materials an&onstructlons, but the general effects of the laminate con-

with finite length have been presented, to at least somgruction on the extent the boundary layers are not dis-

extent, in Refs. 1 through 13. In the discussion that fol_cussed.

lows, reference is made to unbalanced and balanced lam- A pair of complex conjugate, fourth-order equa-
inates that are either symmetrically or unsymetricallytions that are based on Flugge's corresponding
laminated. Herein, the term unbalanced laminate is usezhjuation¥ and that can be solved in closed form are de-
to indicate that coupling between pure extension or corrived for specially orthotropic, circular cylindrical shells
traction and shearing is present in a laminate. The terin Ref. 6. Moreover, eigenfunction solutions are present-
unsymmetric laminate is used to indicate coupling beed that include the solution for the axisymmetric bending
tween any of the components of bending action with anjpoundary layer and several simplifed equations are pre-
of the components of membrane action. A fully anisotrosented and their relative accuracy is analyzed. In Ref. 7,
pic laminate would include both of these types of anisota study of bending boundary layers in transversely iso-
ropy in addition to the anisotropy that is manifested bytropic circular cylindrical shells is presented. This study
coupling between pure bending and twisting action thaéxamines the attenuation characteristics of bending

Studies of the behavior of axisymmetric, bending
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boundary layers by applying an asymptotic method to thary layers in fully anisotropic, right-circular cylinders are
linear, three-dimensional elasticity equations, and prenot found in the literature. Moreover, there appears to be
sents order-of-magnitude estimates for the stresses amden fewer results for laminated-composite shells made
displacements for a wide range of ratios of the two prinef contemporary material systems and essentially no
cipal elastic moduli. In Ref. 8, an analytical solution forsubstantial parametric studies. The present paper focus-
an unbalanced, unsymmetrically laminated circular cyes on developing meaningful estimates of attenuation
lindrical shell that is subjected to internal pressure is prdengths of bending boundary layers in balanced and un-
sented that is based on a variant of the Love-Kirchhofbalanced, symmetrically and unsymmetrically laminated
shell theory, which uses an expression for the change irircular cylinders. The analysis is based on the linear
surface twist that was given by Timoshenko. NumericabBanders-Koiter shell equations and contains the Love-
results are also presented for a two-ply shell that demornkirchhoff shell equatiorsand Donnell's equatiohss
strate the coupling effects of the shell anisotropies.  special cases, and is somewhat similar to the analyses

The bending boundary layers of an unbalanced, urpresented by Reuteand Chaudhuri, et. &l.With these
symmetrically laminated circular cylindrical shell that is equations, explicit expressions are obtained and nondi-
subjected to axial compression, torsion, or thermal loadnensional parameters are presented that characterize the
ing are investigated in Ref. 9. Results are also present@difects of cylinder geometry and laminate construction
that demonstrate the coupling effects of the shelbn the size of a bending boundary layer in a very general
anisotropies. In addition, results are presented for twonanner. In particular, generic design curves are present-
more conventional unsymmetric laminates and a typicag¢d that use the nondimensional parameters to show the
guasi-isotropic laminate. In Refs. 10 and 11, bendingffects of laminate orthotropy and anisotropy on the at-
boundary layers are also examined for balanced, syntenuation length in a concise and encompassing manner.
metrically laminated and balanced, unsymmetricallyln addition, values of these parameters are presented for
laminated cylindrical shells, in the context of nonlineara very wide range of orthotropic and anisotropic laminate
prebuckling deformations that occur as a result of comeonstructions. Also, differences in the results that were
pression and thermal loads. In particular, the effects afbtained in the present study by using the Sanders-Koiter
laminate stacking sequence on the extent and charact#ell equations, the Love-Kirchhoff shell equations, and
of the bending boundary layers are presented for tw&onnell's equations are discussed.
groups of three similar laminates. Two of the laminates
are unsymmetric. In Ref. 12, alinear analysis is present- Analysis
ed that focuses mainly on balanced, symmetrically lami-

. Co The ordinary differential equation that governs the
nated cylinders, and an expression is given for the length . . . . . . .
axisymmetric bending behavior of a right-circular cylin-

of th.e bending boundary Ia_yers near the CV“r?der endaer that is subjected to edge loads or displacements and
that is based on the Love-Kirchhoff shell equations. . . ) ) S .
surface tractions is obtained by first specializing the lin-
Most recently, Goldenveizer's static-geometric du-ear Sanders-Koiter shell equations, that are given in Ap-
ality principlé® has been used in Ref. 13 to reduce thependix A, for axial symmetry. For the equations
Sanders-Koiter equatiol¥$’ for fully anisotropic, right-  presented herein, x afddenote the axial and circum-
circular cylindrical shells to two coupled fourth-order ferential coordinates of a right-circular cylinder, respec-
equations that use a stress and a curvature function as tineely, and the specialization to axial symmetry is
unknown, primary field variables. The reduction is doneobtained by eliminating all terms in the equations that are
by adding certain negligibly small terms to the stressdifferentiatied with respect to the circumferential coordi-
strain relations, which are intrinsically in error becausenate,8. The resulting set of equations for axisymmetric
they must be established experimentally. The approadbehavior are given in Appendix B. The ordinary differ-
demonstrates how the static-geometric duality principleential equation that governs the axisymmetric bending
can be used to reduce greatly the amount of algebra nedathavior of a right-circular cylinder that is subjected to
ed to obtain results. Eigenfunction solutions are also preedge loads or displacements and surface tractions is de-
sented for specially orthotropic cylinders that are inrived in Appendix B and is given by
agreement with corresponding results presented in Ref.

6. Moreover, asymptotic formulas that can be used to de- d*w d?w _

termine axisymmetric bending boundary layer attenua- ox?* +4de2 +4Qw = P(X) (1)
tion lengths and the decay of other unsymmetric, self-

equilibrated edges loads are given. where S, Q, and P(x) are defined in Appendix B by Egs.

With the exception of Ref. 13, explicit expressions(B55), (B56), and (B57), respectively, and w(x) is the
for estimating the size of axisymmetric bending bound+adial deflection that is positive-valued when outward.

3
American Institute of Aeronautics and Astronautics



The coefficients of Eq. (1) depend on the subscripted Agonstitutive matrix in Eq. (4) be positive-valued. More-
B, and D constitutive terms of classical Love-Kirchhoff- over, by rearranging the strain energy density function
type laminated shell theory (e.g., see Ref. 18, pp. 190nto the form

202) and the radius of the cylinder middle surface, R.

To determine the specific form of the solution to g0 Ta A A.B g0
Eqg. (1), it is useful to examine the positive-definiteness [yf’ \ ;\11,&16;\12 Bll /yf’ \
conditions on the strain-energy density function. The U= 2 . 0 AlﬁﬁﬁﬁAZG BlG : 0 @)
strain energy density function for this problem is given \K%f 812 BZG BZZ D12 \K%f
by X 11 16 12 11 X

220 = N2+ Nogg + Ny + MiKS + Mk (2) itgit;(t)ellli?]\g:jng additional positive-definiteness condition

where N, Ny, and N, are the membrane stress result-
:Allﬁsﬁ_ﬁzl6>0 (8)

ants; M, and M, are bending stress resultar§; €5,

and Yy are the middle-surface membrane strains; and

KS andK are are middle-surface bending strains. By The homogeneous solution for Eq. (1) involves the
using Egs. (B22), (B23), and (B28), the strain-energypduare root of the quantity Q 2By using Egs. (B55)

density function is expressed as and (B56), this quantity is given by
2
=NENEF T MK (3 Q-sr=4ebaCs ©
1

The strain energy density is expressed in terms of th

strains and constitutive terms by using the constitutive%l_"bs'[itunng Eq_s. (B41) } (B43) into Eq. _(9) and simpli-
equation given by Eq. (B29); that is, fying, the quantity Q -%is found to be given by

€0 T A ALALB, | (e AnApAgBy
X — X A,AL,AB
%—1f88\ A Az Ay B 183\ Q_82:4(1:2 Ay ARy By (10)
=3 iiaa" g v () 7| A16A2%Ae Bis
X8 16" 26 N es Bio X8 By B1; Big Dy
KS By By, Big Dy | | KX

_ _ It follows logically, that Q - 5> 0 because the posi-
The stiffness terms in Eq. (4) that have overbars argve-definiteness of the strain energy density function
defined by Egs. (B31) - (B35) and are functions of theequires that the determinant in Eq. (10) be positive val-

shell wall thickness-to-radius parameter, h/R. By eq. Moreover Q-0 implies that Q >0, and Q >
enforcing positive definiteness of the strain energy den-

sity function (e.g., see Ref. 19), the requirement that th@ implies that*>0 . Equations (6), (8), and (B43)
diagonal terms A, A,,, Ae, and O, be positive-val-

C3 . ..
ued is obtained. Moreover, the following determmanténd'cate that ¢> 0. Thus,—l >0 yields the condition

are positive valued that G = D ¢ > O (see Egs. (B49) and (B50)). Because
D,; > 0,¢ > 0. To enunciate the positive valuedness of
Ai AZ =A A, —-A%L>0 (5) Q, it is convenient to introduce the expression
T°=Q=—1 (11)
2
AuAgp é 16 _ AR 3D e
ApApAy|= (AllA 22_A212)A66_
AsAxA such that - &> 0, and to express Eq. (1) as
ARG —ARAL+2A LA A x>0 (6
1A% —AnATs 128 16A 26 (6) ?jx4 + ]S?;W + 4T = P(x) (12)

Likewise, positive definiteness of the strain energy den-
sity function also requires that the determinant of the Equation (12) is a linear, fourth-order, nonhomoge-
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neous ordinary differential equation with constant coefformulas for thé\ttenuation Length
ficients. The characteristic equation of Eq. (12) is given Formulas for the attenuation or decay length of the

by bending boundary layers are obtained by first noting that
the response quantities for the region near x = 0 are

bounded by the two functiors €Y' "°*  and that the
response quantities for the region near x = L are bounded

A +4SN*+4T%=0 (13)

Using the knowledge that >F > 0, the roots of the

characteristic equation are obtained from the quadratiby the two functionst Fe Tt | el denote the
formula; that is, length for which the solution attenuates or decays to a
value ofe times the amplitude,for F,. A reasonable es-
2\ _ol_c4i . /T2_2 2) timate of the attenuation length or decay lendttis ob-
()\ )12 2( StiyT =S (14) tained by replacing x and (L - x) witld in the

exponential terms of Eq. (16b), and by noting that the
wherei =¥=1 . Solution of this equation faryields ~ amplitude of w(x) is attenuated by the exponential terms.
gates that are given by e VT"S%=¢ which yields

)\1,2,3,4:¢(~/T—S¢i ~/T+S) (15) =—Ine (T_s)*l’2<% (17)

The homogeneous solution of Eq. (12) can be writBy using Egs. (B55) and (11), Eq. (17) is expressed as
ten as follows

d - d

WH(x):Kle‘ﬁxsin[«/T+Sx+K2] + VRh ~ VRh

4 (18)

Kae_m(L_X)Sin[vT+5X+ K4] (16a) where d° s the attenuation length, in which anisot-
ropy is neglected, that is given in nondimensional form

wherex O[OL] . The symbols KK, K,, and K are by
real-valued constants that are determined from the o
boundary conditions given by Egs. (B18) and (B19). d7:—‘[&0 (19)
The solution given by Eq. (16a) represents a damped, vVRh 3
oscillatory response that decays from each end of the
cylinder. The regions near the edges of the cylinderThe symbol h is the shell wall thickness, afidand #
where the amplitude of \x) is the largest are called the are nondimensional orthotropy and anisotropy parame-
bending boundary layers. All response quantities tha€rs or factors, respectively, that are given by
exhibit bending boundary layers involve derivatives of

Eq. (16a) and can be expressed in the general form v

12A .0y,

O=| ot
(A llA 22 _AiZ)hz

(20a)

F(x) = F,eV/T-S> Sin[mx + Fz] +

Fe /T s/ THSx+F] (1eb)

1/4
(Auhn-AY) ]
A 22€

1

6 -1/2
1-——=—| (20b)
A/ ayDi e
where E through F are constants.
When the length of the bending boundary layers are

less than half of the cylinder length, which is typical,Where t_he symbols in these equations are defined in
Egs. (16) can be partitioned into one part that applies téppendlx B. : .
Other useful forms of Eq. (20a) are obtained by in-

the edge x = 0 and the other that applies to the edge x =

L. The response quantities for the region near x =0 artémJIUCIng an effective membrane Poisson’s ratio

obtained by setting ;= 0 in Eqgs. (16). Similarly, the ) :k' which is the geometric mean of the two
response quantities for the region near x = L are obtained VA nA2
by setting £=0 in Egs. (16). Poisson effects associated with the inplane principal di-

rection of a homogenized orthotropic material. By using
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this effective membrane Poisson'’s ratio, Eq. (20a) is exthe only anisotropic constitutive terms arg, Bnd D,

ressed as
P and the anisotropy factor is given by = Ve where

14

o=| 12Pu (21) h)’
Azzhz(l_vzm) =1_ UzDie (ﬁ)
¢ AseDnhz 1+p2 (h)z Des (25)
For a single-layer of homogeneous, specially orthotro- R A

pic materialV,,=/ViVy # =1, and
For thin-shell theories, such as the Sanders-Koiter the-
1/4

E,

ory and the Love-Kirchhoff theoryE < 2% . This result
Ex(1-ViVa)

suggests that a useful approximation to Eq. (25) and the
anisotropy factor can be obtained from a power series

0= (22)

which, when substituted into Eq. (19), yields result
identical to the results presented by Krawghere the
decay tolerance is given by= €™ Likewise, for a sin- 2 )
gle-layer of isotropic material with an arbitrary thick- A= 1—%(%) Dis (26)
nessy,=v, # =1, and

Sexpansion for small values % . This process yields

2

0= ﬁ (23) In this expressionP<p < % andd < ﬁ <1
Thus, the approximate formula fet indicates that for

A 90%-decay lengthe(= .1) that is a good approxima- most practical applications of thin-shell theory, the dif-
tion to the behavior of homogeneous, metallic shells ierences between the three different shell theories con-

. d° _ h i i sidered herein, and the effect of the flexural anisotropy
given by 5 =1.79 \/% - Applying this formula, for ot 5 general symmetrically laminated cylinder, are negli-
example, to the Space Shuttle solid rocket boostegible.
described in Refs. 20 or 21 (R =72 in., h= 0.5 in.) gives A simplified formula for the anisotropy factor can
d°=0.15R = 10.8 in. be derived for the general expressionAthat is given

It is interesting to note that the differences betweertf)y Eq. (20b). For this case, the following power series

the attenuation lengths that are based on the Sandegscpansions for small values%‘ are used
Koiter, the Love-Kirchhoff, and Donnell's equations ap-
pear in the coefficient and in the symbols with over-

bars in Eqg. (20b) for the anisotropy facténsee Egs.
(B22), (B31) - (B35), and (B45) - (B49). For these equa-

e=c*e[f)+e[f) +m 27)

— h h
tions, the Sanders-Koiter theory is given Iby‘*% and &, =&, am(ﬁ) + am(ﬁ + m (28)

the Love-Kirchhoff theory is given by = 1. Donnell's

equations are given hy= 0. For isotropic and specially a,=a,+ am(h) +a,
orthotropic cylindersi# = 1 and the three sets of shell R
equations yield identical results. Similarly, for antisym-

metric cross-ply cylinders (A= Ay, = D;g= D, = B4 = Ay = A+ am( h ) + am(

)
)2 + [T (29)
By =B, = Bg=0) R )

+ [ (30)

U4 =12 b :b +b (h) +b (D)Z+D:|:|:| (31)
BZ A.B 21 21 121} R 221} R
R N I
u-u (AllAZZ_Ala(AllDll_Bll)
Substituting Egs. (27) - (31) into Eq. (20b) and expand-
and the three shell theories yield identical results. ing the resulting expression in a similar manner yields
2

Simplified Formulas for # A=yt AR+ ) + (32)

For balanced, symmetrically laminated cylinders,
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The coefficient#, is a very complicated expression, andother values could be used.

as a result, the following first-order approximation<of In a manner similar to Fig. 1, Fig. 2 shows the non-

is used herein; that is, dimensional, 90%-decay length as a function of the
anisotropy parametet, for selected values of the orthot-

- 1+ h ropy paramete@. Results that correspond to balanced,

A=A H él( R) (33) symmetrically laminated cylinders are given by a value

of # =1 and results that correspond to an isotropic shell
where~, is the value of Eq. (20b) with = 0, which is ~ wall are indicated in the figures by the filled circle with

the anisotropy factor that corresponds to the use of Dorfth ordinate value of 1.79. Overall, these two figures rep-
nell's equations. This expression is given by resent results that are applicable to a vast range of lami-

nate constructions, and provide a common basis for
b -v2 comparison of regular and hybrid laminates made of dif-
1-—=— (34) ferent material systems and laminate stacking sequences.
v azzDuJ In general, the figures show increases in the nondimen-
sional 90%-decay length with increases in either of the
In this expression,,aand ki, are obtained from Egs. orthotropy parametef or the anisotropy parametet
(B45) - (B48) by settingt = 0 in Egs. (B31) - (B35). In addition, the results in Figs. 1 and 2 clearly indicate
The expression for, is obtained from Eq. (B49) in a the effect of neglecting shell-wall anisotropy on the at-
similar manner. The terng, represents a first-order tenuation length of a bending boundary layer.
correction to the results that correspond to Donnell’'s ~ The actual value of the nondimensional, 90%-de-

4
A11A22_A21
( A, Z)a”eﬂ}

1

"

equations and is given by cay length depends on the particular values of the orthot-
ropy and anisotropy parameters of a given laminate.
\/azDre, (az et a, Zeo) +2a22(b12120_b2161)_2a122b21e0 Thus, additional results are presented subsequently that
.= (35)  show how the orthotropy parametzand the anisotropy

A2 [ 3Dreo _bﬂ] paramete# vary with laminate construction. In particu-

lar, values o0 and # are presented first for balanced
where the terms that appear in Eq. (35) are given igng unbalanced symmetrically laminated cylinders.
Appendix C. In addition, further simplifications t&  Then, values are presented for balanced and unbalanced
and ¢, are also presented in Appendix C for unbalance@nsymmetrically laminated cylinders. Nine different
and balanced, symmetric laminates and for balancedontemporary material systems were used to generate
unsymmetric laminates, that include the subclasses ahese results. These material systems include boron-alu-
general antisymmetric laminates, antisymmetric crossminum, S-glass-epoxy, a typical boron-epoxy, AS4/
ply laminates, and antisymmetric angle-ply laminates3501-6 graphite-epoxy, AS4/3502 graphite-epoxy, IM7/
The relative size of, and its contribution to Eq. (33) 5260 graphite-bismaleimide, Kevlar 49-epoxy, IM7/
are examined parametrically in the subsequent sectid®RETI-5, and P-100/3502 pitch-epoxy materials. The me-
of the present study. chanical properties of these material systems are present-

ed in Table 1 and the nominal ply thickness that was used

Results and Discussion is 0.005 in.

Equations (18) and (19) form the basis for the para-
metric study presented herein. In particular, the twdalanced, Symmetrically Laminated Cylinders
equations isolate the contributions of shell orthotropy

d shell ani he bending boundarv-| g Symmetrically laminated shell walls are character-
and she am'_sotropy FO t € bending boundary-layer gz qq mathematically by values of zero for the subscripted
cay length with nondimensional parameters and impl

. . : . B terms that appear in the constitutive equation, Eq.
the_generlc de5|gn-chart_representa_nons that are illustr A15). In addition, balanced, symmetrically laminated
edin Figs. 1and 2. In F'g' L generic results are presentp o) 'yalls do not exhibit coupling between extension
ed that show the nondimensional, 90%-decay length shear, which is characterized by, AA. = 0 in Eq.
given by % as a function of the orthotropy pa- (A15). Shell walls of this class are strictly specially

g=01 orthotropic for many laminates. However, for some wall
rameterd, for selected values of the anisotropy parameconstructions, balanced, symmetric laminates exhibit
ter 4. A 90%-decay length was selected herein to yieldnisotropy in the form of coupling between pure bending
an accuracy that is approximately to within the accuracy@nd twisting of the shell wall. This type of anisotropy is
of the experimentally determined material properties, bumanifested by nonzero values of thg &nd D, consti-
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tutive terms in Eq. (A15). However, the discussion ofThe actual material properties that were used are given in
Eq. (26) that has been given herein indicates that thiRef. 6. In this table, the quantity used for comparison is
type of anisotropy is negligible for thin shells and that thegiven by

differences between results obtained from the Sanders-

Koiter, the Love-Kirchhoff, and Donnell theories are in- _¥3 /R
significant. Moreover#=1 for this class of laminated- Re(f) = 7\/%
composite shell walls, and the attenuation behavior is

governed by the nondimensional orthotropy parangter which is the real part of the exponeatthat appears in
that is given by Eq. (20a). Furthermore, Egs. (18) anthe eigenfunction solution used by Cheng and Ho (n =0
(19) indicate that the attenuation length is a constarnh Eq. (25) of Ref. 6; see also Eq. (47) of Ref. 13), which
multiple of the orthotropy parameter that depends on theorresponds to the decay or attenuation of the response.
attenuation-tolerance parameter For this case, trends The orthotropy parameter shown in Eq. (37) is defined
that are exhibited bg are identical to those exhibited by by Eqg. (36). The results in Table 2, show very good
the attenuation length based on any value of agreement (less than 1% difference) for all three materi-

Values of the orthotropy parameteare presented als. In addition, the results obtained herein that are
in Fig. 3 for single-ply, homogeneous, specially ortho-Shown in Table 2 for the boron-epoxy material are also
tropic and isotropic shell walls, with arbitrary thickness,in excellent agreement with the corresponding results
as a function of the ratio of the principal elastic moduli,presented by McDevitt and Simmorids.

E,/E,. Forthese results, the orthotropy parameter is giv-  Values of the orthotropy parametgare presented
en by Eq. (22) and is expressed in the following morén Fig. 4 for multilayered [(¢),] laminates made from
convenient form the nine material systems as a function of the fiber angle
@, which is measured from the x-axis toward @haxis.
The results are independent of the stacking sequence
(36) number m and show a wide variationdnwith the ma-
terial system. The results also show, for the most part, a
wide variation ing with the fiber anglep and show a re-

One curve, that is essentially several coincident CUIVeS, ton ind as the fiber angle increases from zero to

is shown in the figure that corresponds to general resultnsInety degrees. The largest value (2.93) and the smallest

for 0.2<v,,<0.35 . In addition, specific results for the \5),e (0.34) of©0 are exhibited by the unidirectional

nine material systems considered herein and for a typjzminates made from P-100/3502 pitch-epoxy material,
cal aluminum and a steel are indicated in the figure by

the square symbols. The results in Fig. 3 indicate thatnd correspond to values 9%]
the effect of variations in the major Poisson’s ratio on ) o
the orthotropy paramete# are small compared to the 0._59, respectlvely. Moreovgr, the greatgst var_|at|oa_|n.

effect of variations in the ratio of the principal elastic With the fiber angle (approximately 8.7 times) is exhibit-

moduli. Moreover, the results show thtdecreases ed by the laminates made from P-100/3502 pitch-epoxy

rapidly as the ratio of the principal elastic moduli matenal. The smallest variation is exhibited by the lam-

. . inates made from the boron-aluminum material.
increases, particularly for values of/IE less than o

. . Results are presented in Fig. 5 that show the values
approximately 0.1, which corresponds to most of the

contemporary orthotropic materials considered hereinc.)f the orthotropy parameter for [(£45/f), [(0,/+45),],

Figure 3 also shows that an isotropic material corre[(i45/902)m]83 [(90, /+45),];, [(+45/0/90}], a“?' [(0_/90/
sponds to0 = 1 *45) ], laminates made of IM7/5260 graphite-bismale-
Values of the orthotropy parametr for the sin- imide material for values of the stacking sequence num-
ber m=1to 6. Values @ range from approximately

gle-ply, homogeneous, specially orthotropic cylinders
investigated by Cheng and Heere also obtained. A 1.53 to 0.64. These results show that the curves for the

comparison of the results obtained in the present Stqu45/02)m]s_and [(Q/245),], laminates gpproachﬁ ~

with the corresponding results of Ref. 6 are presented ii-41 @S mincreases to a value of 6, with the curve for the
Table 2 for boron-epoxy, glass-epoxy, and graphite-ep[(oz /+45), ], laminates converging from above and the
oxy materials and for the cylinder radius-to-thickness raother curve converging from below. The higher values
tio R/h =208.311. Moreover, a range of results is showaf @ for the [(Q/+45), ], laminates, are attributed to the
for Ref. 6 which corresponds to various simplificationshigher axial bending stiffness that is obtained by placing
that were used in the equations that govern the respongbe zero-degree plies at the outer surfaces of the lami-

(37)

equalto5.13 and

g€=01
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nates, particularly, for the lower values of the stackingSimplifed expressions for the anisotropy parame#gr
sequence number m. Similarly, the results in Fig. 5 showind the first-order correction factgy, defined by Egs.
that the curves for the [(+45/9Q]; and [(9Q/+45).];  (33) - (35), are given by Egs. (C23) and (C24), respec-
laminates approac# = 0.76 as m increases to a valuetively. Equation (C24) indicates that the valfiede-
of 6, with the curve for the [(x45/90)], laminates con- pends on coupling between the membrane and flexural
verging from above and the other curve converging fronanisotropies.
below. Likewise, the results in Fig. 5 show thaF the Values of the orthotropy parametrfor [(+¢),.].
curves for the [(£45/0/9Q); and [(0/90/+43)], quasi- symmetric, unidirectional laminates for the nine material
isotropic laminates approaci = 1.03 as mincreases gystems considered herein are also presented in Fig. 4;
to a value of 6, with the curve for the [(0/90/£43)am-  that is, the curves presented in Fig. 4 for the)( sym-
inates converging from above and the other curve conmetric angle-ply laminates are identical to those for the
verging from below. corresponding [(¢),,]. symmetric, unidirectional lami-
Overall, the results in Fig. 5 indicate that the [(45/nates. Thus, the orthotropy behavioral trends for the un-
0,).ls and [(Q/+45), ] laminates exhibit higher values of gjrectional laminates are identical to those discussed
the orthotropy parameter than the [(+45/0/90and [(0/  previously for the symmetric angle-ply laminates, and
90/+45) ], quasi-isotropic laminates, which exhibit are also independent of the stacking sequence number
higher values of the orthotropy parameter than the [(x45M.
90),ls and [(9Q/+45),]; laminates. This trend corre- Results for the anisotropy parameséy and the
sponds to a reduction in the valuefofas the axial bend- first-order correction factog, are shown in Figs. 8 and
ing and extensional stiffnesses of the laminates decreasg;, respectively, for the [9),,,]. symmetric, unidirection-
Results are presented in Fig. 6 that show the effec{| |aminates with the nine material systems considered
of the nine material systems considered herein on thgerein and are independent of the stacking sequence
orthotropy parameter for the [(B:45) ] laminates. pumper m. The results in Fig. 8 show a substantial vari-
Values of@ range from approximately 1.67 for P-100/ ation in -4, with fiber orientation and with material sys-
3502 pitch-epoxy material to 1.09 for boron-aluminumtem. The results show tha#, is the most pronounced
material. Most of the materials exhibit value@dfi the  for values of the fiber anglep between approximately
range of approximately 1.4 to 1.6. All of the curves showb5 deg and 80 deg, and that the contribution of the anisot-
about the same reduction dhas the stacking sequence ropy to the attenuation behavior is essentially insignifi-
number m increases. cant (less than 1.05) for values@k 25 deg and > 85
Results similar to those in Fig. 6 are presented ifled. Moreover, the largest variationAf with fiber an-
Fig. 7 that show the effect of the nine material system§le is exhibited by the laminates made of the P-100/3502
on the orthotropy parameter for the [(+45/0/90Rnd pitch-epoxy material and the smallest variation is exhib-
[(0/90/+45) ], quasi-isotropic laminates. These resultsited by the laminates made of poron—aluminum material.
show a much smaller variation in the orthotropy param.Yalues ob#, range from approximately 1.42 for the max-
eter with material system and stacking sequence numb&pUm point on the curve for the P-100/3502 pitch-epoxy
for the quasi-isotropic laminates than for thg f¢@5),], ~ Material to a value of 1.
laminates in Fig. 6. In particular, valueofor the qua- The results shown in Fig. 9 for the first-order cor-
si-isotropic laminates range from approximately 1.15 tdection factorg, for the [(+p),,], symmetric, unidirec-
1. The largest values 6fin Fig. 7 are exhibited by lam- tional laminates indicate a substantial relative variation
inates from P-100/3502 pitch-epoxy material. More-IN & With fiber orientation and with material system, but
over, the results show a larger variation @nwith all of the magnitudes qf, are less than approximately
stacking sequence number for the [(0/90/+15)ami- 0.45. Moreover, the magnitudeg@fis less than approx-
nates than for the [(+45/0/90) laminates. imately 0.2 for all of the materials except the P-100/3502
pitch-epoxy material. For the upper bound of thinness of
thin-shell theory, given by h/R = 1/20, the contribution of
¢, to the anisotropy factor defined by Eqg. (33) is practi-
Unbalanced, symmetric laminates exhibit anisotrocally negligible. Equation (C24) indicates that the insig-
py in the form of extensional-shear coupling,( AA,;  nificance ofg, means that the coupling of the membrane
# 0) in addition to flexural anisotropy (D# D,;# 0 ).  and flexural anisotropies are negligible for these lami-
For these laminates, the value of the anisotropy parameates. The insignificance gf is illustrated and verified
ter+# given by Egs. (20b) and (33) is not equal to unity.in Fig. 10 for the [(#),,], Symmetric, unidirectional

Unbalanced, Symmetrically Laminated Cylinders
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laminates made of IM7/5260 graphite-bismaleimide mathe coupling of the membrane and flexural anisotropies
terial (black curves) and made of P-100/3502 pitch-epare unimportant with regards to the primary effect of the
oxy material (gray curves), for h/R = 1/20. The finely individual shell anisotropies that is captured by the pa-
dashed curves shown in Fig. 10 correspond to 90%-deameter 4,

cay lengths for which the anisotropy is neglected. In

contrast, the solid curves and the coarsely dashed gra

curve include the effect of the membrane anisotropy ané
are shown for values @f= 0, 1, and 1.5. For these val- Balanced, unsymmetric laminates may, in general,
ues, results that correspond to the Sanders-Koiter theoekhibit anisotropy in the form of coupling between pure
and bending and twisting (R # D, # 0 ) and coupling be-

) ,tlween membrane and bending action, which is manifest-
W =1, respectively. Results that correspond to Donnell'gy py nonzero values for any of the subscripted B-terms
equations are given by = 0. The solid curves in Fig. i, £q (A15). These laminates do not, however, exhibit
10 forp=1and 1.5 are pased on the exact solution that,:ansional-shear coupling (A= A, = 0). For the un-
Uses Eq. (20b) for the anisotropy factor. _The corresponds— mmetric laminates that are discussed subsequently, the
ing curves that are based on the approximate formulafcf st ply in the stacking sequence is the innermost ply of

the anisotropy parameter that is given by Eq. (33) ar : - . . i
identical. The solid curves and the coarsely dashed gra}gl cylinder. Simplifed expressions for the anisotropy pa

L Lo . <yimeter;40 and the first-order correction factgy, de-

curve indicate that varyingyields a small effect, which . .
- e . fined by Egs. (33) - (35), are given by Egs. (C27) and
implies that all three shell theories yield essentially the . ) oo

_ (C29), respectively. Equations (C28) and (C29) indicate
same results and tha# = #, for the [(4p),,], Symmet- .
: e . ems . that the valug?, depends on coupling between the flex-
ric, unidirectional laminates. Comparing the solid and . :

ural anisotropy and the anisotropy caused by unsymmet-

finely dashed curves in Fig. 10 also indicates that ne- L
ric lamination.

glecting the membrane anisotropy underestimates the . ) _
bending boundary-layer decay length, by as much as ap- Results for regular, antisymmetric angle-ply lami-

proximately 31% and 21% for shell walls made of P-100/@t€s are shown in Figs. 4 and 12-16. In particular, val-
3502 pitch-epoxy and IM7/5260 graphite-bismaleimideues of the orthotropy paramet@rfor [(+¢), ]
materials, respectively. unsymmetric laminates made of the nine material sys-
tems considered herein are also presented in Fig. 4; that
Values of the orthotropy paramet@rfor [(+45/0/ g, the orthotropy-parameter curves presented in Fig. 4
90),]; and [(0/90/+49, ], laminates made of the nine for the [(p), ], symmetric angle-ply laminates are also
material systems considered herein are also presentediiientical to those for [@,]; unsymmetric laminates.
Fig. 7. More specifically, the values @ffor these lam-  Thus, the orthotropy behavioral trends for thep[(F
inates are identical to the values for the correspondingnsymmetric laminates are identical to those discussed
quasi-isotropic laminates. Results for the anisotropy papreviously for the corresponding symmetric angle-ply
rameter#, defined by Eq. (34) are shown in Fig. 11 for |aminates, and are also independent of the stacking
[(+45,/0/90), ], and [(0/90/+49, ], laminates made of sequence number m.
the nine material systems considered herein. The results  Results for the anisotropy parametgrdefined by
in Fig. 11 show no significant variation i, with the  gq (c27) are shown in Fig. 12 for 2-plyg: unsym-
stacking sequence number m, and only a slight variatiopetric laminates made of the nine material systems con-
(less than approximately 9%) with material system. Valsjgered herein. The results in Fig. 12 show a substantial
ues of4, range between approximately 1.1 and 1. Coryariation in#, with fiber orientation and with material
responding results for the first-order correction fagtor  system, and show that, is the most pronounced for val-
defined by Eq. (35), that are not shown herein, were oljzes of the fiber angle between approximately 15 deg
tained that indicate that all of the values@f for the  gnd 60 deg. Moreover, the largest variatiosjmwith fi-
[(+45,/0/90),]; and [(0/90/+43,]; laminates are less per angle is exhibited by the laminates made of the P-
than approximately 0.1. These values indicate that theo0/3502 pitch-epoxy material and the smallest variation
contribution of¢, to the anisotropy factor defined by Eq. is exhibited by the laminates made of boron-aluminum
(33) is practically negligible. Thus# = »#, for these material. Values o¥#, range from approximately 0.75
laminates. The values.gf shown in Fig. 11 suggest that for the minimum point on the curve for the P-100/3502
neglecting the anisotropy would, at most, underestimatgitch-epoxy material to a value of 1. The results in Fig.
the bending boundary-layer decay length by approxi13 show the variation in#, with the fiber anglep and
mately a 10%. The insignificance gf also means that the stacking sequence number m for@j(} unsym-

alanced, Unsymmetrically Laminated Cylinders

and the Love-Kirchhoff theory are given W%
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metric laminates made of the P-100/3502 pitch-epoxypoundary-layer decay length.
material. These results show a rapid decline in the im-  values of the orthotropy parametér and the

portance Offfo, that is manifested by the curve moving anisotropy parametex, for (Op /90q)T unsymmetric

closer to4, = 1, as the stacking sequence number ingross-ply laminates are shown in Figs. 17 and 18 for the
creases. For m=2,0.954<1. nine material systems considered herein and as a func-

Results for the first-order correction facggr are  tion of the percentage of zero-degree plies. For this class
shown in Fig. 14 for 2-ply [¢, unsymmetric laminates ©f laminates, Eq. (20b) simplifies to Eq. (34); thaks;

made of the nine material systems considered hereiffo This simplification means that the anisotropy param-
The results in Fig. 14 also show a substantial variation ifft€" IS independent gf which means that all three of the
¢, with fiber orientation and with material system. How- shell theories considered herein yield identical results.
ever, the maximum magnitude gf is less than 0.07 for ~ The results in Fig. 17 show a large variatiorgin

all of the material systems. Results are presented in Fi?f't_h the percentage of zero-deg plies for most of the ma-
15 that show the variation ig, with the fiber anglap erial systems. In addition, the results show a large vari-
and the stacking sequence number m forg)[( un- ation in@ with material system for the laminates that are
symmetric laminates made of the P-100/3502 pitch-epdominated by ninety-deg plies (less than approximately

oxy material. These results show significant reductiond 0% zgro-deg plies) and by zgro-deg plies ( more than
in @, with an increase in the stacking sequence number.""pprox'mate_'y 80% zero-deg plies). VaIuerifary the
Overall, the results in Figs. 14 and 15 indicate tha{nOSt for laminates made of P-100/3502 pitch-epoxy ma-

the contribution o, to the anisotropy factor defined by erial, with values that rapge from (_slpprommately 0-3 10
. - . . 2.93. Most of the materials exhibit values@in the
Eq. (33) is negligible for the upper bound of thinness giv-

en by h/R = 1/20, which means th&t= 4, Thus, the range of approxmat(_aly 0.5t02.1. T
results in Fig. 12 for the two-ply §. unsymmetric The results in Fig. 18 also show a large variation in
) T

A, with the percentage of zero-deg plies for most of the

overestimates the bending boundary laver. by as much Ynaterial systems, and show a large variation with mate-
v : ing bou y'ayer, by ueh a3 system for laminates with less than 70% zero-deg

i 0, 0, -
approximately 33% and 22% for shell walls made of P plies. Moreover, the results show thgis the most pro-

100/3502 pitch-epoxy and IM7/5260 graphite-bismale- . .
imide mat([a)rials, r?asp{actively. The ingignﬁficancaepf nounced (most different from a value of 1) for laminates

: ) 0 0 i :
also means that the coupling of the flexural anisotrop with approximately 15% to 30% zero-deg plies. The

. . .~ “Margest variation in4, with percentage of zero-deg plies
and the anisotropy caused by unsymmetric lamination is g %o P g gp

unimportant with regards to the primary effect of the in-> exhibited by th_e laminates made of the_P-1_00/35_02
dividual shell anisotropies. The insignificancezofs il- pitch-epoxy material and the smallest variation is exhib-

A ited by the laminates made of boron-aluminum material.
lustrated in Fig. 16 by the gray and by the black curve . .
for the laminates made of P-100/3502 pitch-epoxy an alues ot range from approximately 0.57 for the min

IM7/5260 graphite-bismaleimide materials, respective- " 4™M point on the curve for the P-100/3502 piich-epoxy

ly. The solid black and gray curves are for the uppetpqhzte”haélfo aa\|/|a|:§' Oc];tic') Thl;S’e'r';Stqgigasainggfgzng
bound of thin-shell theory that is given by h/R = 1/20. S w Isotropy overesti s N9

The finely dashed curves shown in the Fig. 16 correpoundary layer, by as much as approximately 75% for a

spond to 90%-decay lengths for which the anisotropy i ?f” waIII maﬂle of P'deO/ 3502 p|:)ch-<ra]p0xy material.
neglected. In contrast, the solid curves include the effect. IS result s illustrated in F'g' 19 y the gray curves.
of the shell anisotropy and are shown for valugs 0, imilar r(_asults are presgnted in Fig. 19 fqy/90,); un-

1, and 1.5. The solid curves for= 1 and 1.5 are based SYMMetic cross-ply laminates made of IM7/5260 graph-
on the exact solution that uses Eq. (20b). The corrdte-bismaleimide material (black curves). The solid

sponding curves that are based on the approximate foPlack and gray curves include the effect of the shell

mula for the anisotropy parameter that is given by Eqz_anisotropy and the finely dashed curves shown in the fig-

(33) are identical. The solid curves indicate no signifi-uré correspond to 90%-decay lengths for which the
cant effect of varying., which implies that all three shell @NSOtropy is neglected. The results in Fig. 19 show that

theories yield essentially the same results for thg, [+ including the effect of anisotropy is particularly impor-
i . : 0
unsymmetric laminates. For [§], unsymmetric lam- tant for laminates with less than approximately 70%

inates with m > 1 and made from any of the nine materiaﬁero_deg plies.

systems considered herein, the results in Figs. 12 through ) ) ]

15 indicate that neglecting the shell-wall anisotropy will Ynbalanced, Unsymmetrically Laminated Cylinders
have a small effect on the calculation of the bending Unbalanced, unsymmetric laminates may, in gen-
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eral, exhibit full anisotropy in the form of coupling be- that is given by h/R = 1/20, which means that 4,
tween pure bending and twisting (¥ D, # 0 ) and  Thus, the results in Fig. 21 suggest that in some cases ne-
coupling between membrane and bending action, whichlecting the shell-wall anisotropy may overestimate the
is manifested by nonzero values for any of the subscriptending boundary-layer decay length and in other cases,
ed B-terms in EqQ. (A15), and extensional-shear couplingnay underestimate the decay length. The insignificance
(A% A% 0). The expressions for the anisotropy pa-of ¢, also means that the contribution of the flexural
rameter#, and the first-order correction faci@rthat are  anisotropy to the coupling of the anisotropies is negligi-
given by Egs. (C2) - (C22) indicate thétexhibits cou- ble. The insignificance @, is clarified in Fig. 22 for
pling between the membrane anisotropy and the anisolaminates made of P-100/3502 pitch-epoxy material
ropy that is caused by unsymmetric lamination, and thafgray curves) and of IM7/5260 graphite-bismaleimide
¢, exhibits coupling between all three types of anisotrommaterial (black curves). The solid black and gray curves
pies. One family of laminates that exhibits all of theseare for the upper bound of thinness given by h/R = 1/20.

anisotropies is the (qu)T unbalanced, unsymmetric The flnely dashed curves shown in the figure Correspond
laminates with p > 0 and#0. to 90%-decay lengths for which the anisotropy is ne-

glected. In contrast, the solid curves include the effect of

Values of the orthotropy parametér and the (e shell anisotropy and are shown for valugs =0, 1,
anisotropy paramete#, for (7Q,/0,); unbalanced, un- and 1.5. Moreover, the solid curves fior 1 and 1.5 are
symmetric laminates are shown in Figs. 20 and 21, repased on the exact solution that uses Eq. (20b). The cor-
spectively, for the nine material systems consideredesponding curves that are based on the approximate for-
herein and as a function of the percentage of seventy-degula for the anisotropy parameter that is given by Eq.
plies. The results in Fig. 20 show a large variatiof in (33) are identical. The solid curves indicate a negligible
with the percentage of seventy-deg plies for most of theffect of varyingu, which verifies that# = -, and im-
material systems. The results also show a large variatigflies that all three shell theories yield essentially the
in 0 with material system for the laminates that are domsame results for the (f@,); unbalanced, unsymmetric
inated by zero-deg plies (less than approximately 20%aminates. In addition, the results show that neglecting
seventy-deg plies). Values 6f vary the most for the the shell wall anisotropy, for the most part, underesti-
laminates made of P-100/3502 pitch-epoxy materialmates the bending boundary-layer decay length, by as

with values that range from approximately 0.5to 3.  much as approximately 16% and 6% for shell walls made

The results in Fig. 21 also show a substantial varia9f P-100/3502 pitch-epoxy and IM7/5260 graphite-bis-

L . ) . maleimide materials, respectively, and with approxi-
tion in # with the percentage of seventy-deg plies formately 20% seventy-deg plies. In addition, the results in

most 9f the material systgms, anq a large variation W'ﬂl}ig. 22 show that neglecting the shell wall anisotropy un-
material system for laminates with between approxi-

mately 45% and 100% seventy-deg plies. The large derestimates the bending boundary-layer decay length,

o . %ty as much as approximately 31% and 20% for shell
overall variation in#, with percentage of seventy-deg walls made of P-100/3502 pitch-epoxy and IM7/5260

plies is exhibited by the laminates made of the P-1004anhite_hismaleimide materials, respectively, and with
350_2 .p|tch—epoxy m_atenal and the smallest va}rlatlon 'Solpproximately 100% seventy-deg plies. There is only a
exh|b|ted by the laminates made of boro_n—alummum Mayery small range shown in Fig. 22 where neglecting the
terial. Values of4, range from approximately 1.4 10 gpe| wall anisotropy overestimates the bending bound-

0.95, which correspond to the maximum and minimumyry_|ayer decay length, and for this region, the effect is
points, respectively, on the curve for the P-100/350%¢gjigible.

pitch-epoxy material.
Results for the first-order correction facgr were Concluding Remarks

also obtained for (700,), unbalanced, unsymmetric An analytical study of the attenuation of bending

laminates made of the nine material systems considerq;.j)undary layers in both balanced and unbalanced, sym-
herein, but are not included in the present paper. The$fetrically and unsymmetrically laminated-composite,
results also show a substantial, relative variatiog,in thin cylindrical shells has been presented for nine con-
with the percentage of seventy-deg plies, but overall thesmporary material systems. The analysis is based on the
magnitude of¢, is less than approximately 0.25 for the jinear Sanders-Koiter shell equations and contains the
P-100/3502 pitch-epoxy material and less than 0.1 for ove-Kirchhoff shell equations and Donnell’s equations
the other materials. These results indicate that the coas special cases. With this analysis, two nondimensional
tribution of ¢, to the anisotropy factor defined by Eq. parameters have been indentified that characterize and
(33) is negligible for the upper bound of thin-shell theoryquantify the effects of laminate orthotropy and laminate
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anisotropy on the bending boundary-layer decay lengtkquations are presented. Last, the boundary conditions
in a very general and encompassing manner. The anis@re given for a complete right-circular cylinder at an
ropy parameter includes the effects of anisotropy in thedge that is given by a constant value of the axial coordi-
form of coupling between pure bending and twisting thanate, x.

appears in many symmetric laminates to some extent,

coupling between extension and shear that is present gy ilibrium Equations

unbalanced laminates, and coupling between membrane

and bending action that is present in unsymmetric lami- . .
'ng ! ISP in unsy : I|Iar'[othosefound in Ref. 22; that is,

The equilibrium equations are given in a form sim-

nates.

A substantial number of structural design technolo- ON, . 10N, ¢, oM,
gy results for the bending boundary-layer decay length x TRoe i o TH=0 (A1)
have been presented for a wide range of laminated-com-
posite shell structures that should be useful additions to ON,, . 10N, . c, c, OM,,
the structural designer’s collection of preliminary design ox TRog TR 2R ox T%=0 (A2)
tools. Moreover, the analysis and results should provide
additional physical insight into the fundamental behavior 0Q. . 10Q, _N, -0
of general laminated composite shell structures and pro- ox "Rag R ThT (A3)
vide a common basis for assessing bending boundary-
layer attenuation for the vast range of laminate construc- oM, + 10M, ~Q,=0 (Ad)
tions that are possible. Furthermore, the results should ox R08

be useful for the design of specimens for material char-
acterization tests, for instrumenting structural verifica-
tion tests, and for defining finite-element meshes. For all
the laminate constructions considered in the present

) wher Ny, an re the membrane str result-
study, the results show that the differences between re- ere N, Ny, and N, are the membrane stress result

sults that were obtained with the Sanders-Koiter sheff™™> Qand Q are the transverse shear-stress resultants;
equations, the Love-Kirchhoff shell equations, and DonMx Me and M, are the bending stress resultangsog
nell's equations are negligible. The results also sho@"d § are the applied surface tractions; apied ¢

that the effect of anisotropy in the form of coupling be-are constants that identify the equations of other shell
tween pure bending and twisting has a neglible effect ofheories that are considered herein. In particular, the
the size of the bending boundary-layer attenuation lengthanders-Koiter equations are given by=c, = 1 and

of the balanced, symmetrically laminated cylinders conthe Love-Kirchhoff equations are give by=1 and ¢=
sidered. Moreover, the results show that the coupling add. Donnell’s equations are given by=c, = 0. This

the membrane and flexural anisotropy and the anisotropbnvention is used throughout the present study.

caused by unsymmetric lamination is generally unimpor-

tant with regards to the primary effect of the individual . . :

shell anisotropies on the bending boundary-layer deca§wﬂel§qm]S

length. The only exception encountered was for unbal- ~ The kinematic equations are given by

anced, unsymmetrically laminated cylinders for which

coupling of the membrane anisotropy and the anisotropy o= 0U (AB)
caused by unsymmetric lamination is a primary effect, as
expected. The results also show that in some cases ne-

oM, . 10M _
ox "Rog "0 (A5)

glecting the shell anisotropy results in underestimating " Roo TR (A7)
the bending boundary-layer decay length and in other
cases it results in an overestimation. Voo = %x +%% (A8)
AppendixA: Sanders-Kiter Equations o_ OW
) . x= 70X (A9)
The linear Sanders-Koiter shell equatiSnsare

presented in this appendix for a right-circular cylinder o_Ci. 10w
with a radius that is given by R. For these equations, x B.= RY"R00 (A10)
and© denote the axial and circumferential coordinates,
respectively. First, the equilibrium equations are pre- B° :&(av _;@) (A11)
sented, then the kinematic equations and the constitutive "~ 2\0x RO
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._ OB, _ ow

Kx - aX axz

o_10Bs_cigv_ 19w

Ke=R90 ~R200 R’ 902

@© ©

o _1(9B% . 4ol , OB
Kxe_R(ae+B”)+7d7

ow 1 1
- axae"ﬁ(cl’“écz

)ﬂ_ C, du
0X 2R?00

AN

(Al2) Where ue) ,v(6) , andv(8) are applied edge displace-
ments; B(6) is an applied edge rotation; aNd(®)

T(©) V(O M., (6 i
(A13) (8),V(6), andM,(6) are applied edge loads.

Appendix B: Equations fokxisymmetry

The linear Sanders-Koiter shell equations that are
presented in Appendix A for a right-circular cylinder

(A14) with a radius R are specialized in this appendix for the

case of axisymmetric behavior. For these equations, x
and 6 denote the axial and circumferential coordinates,

where u, v, and w are the axial, circumferential, and NOrregpectively. The specialization to axial symmetry is
mal displacements of a point of the shell middle surfacezgnqucted by eliminating all terms in the equations of

€, € andY, are the membrane straifi; B5, , andippendix A that are differentiatied with respect to the

B are the rotations; arkf Ky , aH@ are the bend:-
ing strains. The displacement w is positive when it is

outward from the cylinder reference surface.

Constitutve Equations

circumferential coordinatef. First, the equilibrium

. equations, the kinematic equations, and the constitutive
equations are presented. Then, the boundary conditions
are given for a complete right-circular cylinder at an
edge that is given by a constant value of the axial coordi-
nate, x. Last, the axisymmetric equations are manipulat-

The isothermal constitutive equations are given ired into a single ordinary differential equation in terms of

matrix form by

the normal displacement w(x).

| €2 Equilibrium Equations
N, A11A12Ale§ By By, By o el . . .
N, A,A,A,.B,B, B, & The equilibrium equations for axisymmetric behav-
No | _|AuALALBLBLBy |/ Yo |\ o ioraregiven by
Mx Sn glz gmign Blz Bus K,
2] 12 22 263 12 22 26 o de —_
Mxe BlG Bze BeﬁiDlG Dzs D66 KK: dx + qX(X) =0 (Bl)
- X8
dN, , c C, dM,, _
where the subscripted A, B, and D terms of the matrix x TRE 2R dx * %(x) =0 (B2)
are the stiffnesses of laminated composite shells that are
obtained from '_[he_ Love-Klrc_hhoff shell theory. More- dQ, N +q(x)=0 (83)
over, the constitutive terms in Eq. (A15) are identical to dxk R
those for laminated-composite plates that are given in
dM,
Ref. 18, p. 198. e ~Q,=0 (B4)
Boundary Conditions
. . . deB — 0
The boundary conditions for an edge that is defined dx -Q= (B5)

by a constant value of the axial coordinate x are given by

N,=N,(8) or u=0(®)
Nxe+%(c1+%C2)Mxe:T(e) or v=v(9)

oM,
Q+raee=VO or w=w(®)

M=M(®)  or B=P(O)

where the membrane stress resultantsNy, and N,;
(A16) the transverse shear-stress resultantsa@ Q; the
bending stress resultants,MM,, and M, and the
(A17) applied surface tractions,qy, and ¢ are functions of
only the axial coordinate, Xx.

(A18) Kinematic Equations

The kinematic equations are given by
(A19)
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::37;"( (B6) Nxe+%(c1+%C2)Mxe:T or V=V (B17)
eg:% (B7) Q.=V or w=w (B18)
M. =M °=
Vs :% (B9) =M, or B;=PB (B19)
B = dw B9 where the applied edge displacememnt¥ , ,&®nd ;the
" ax (B9) applied edge rotatiof ; and the applied edge Id%ds
o_C T,V,andM, are all constants.
Be= rY (B10)
Cdv Bending Boundary-Layer Equation
o _ 2
B““?& (B11) The bending boundary-layer equation is obtained
by first noting that integration of Eq. (B1) yields
d o
Ko = di* =— %2)‘(“2’ (B12) : -
N,=—| g.dx+C=N(x) (B20)
Ke=0
? (B13) where C is a constant of integration that is determined
aB° from the boundary condition given by Eq. (B16). Next,
Kso = SB5+ % = %(c1 + %Cz)% (814) Egs. (B2) and (B5) are combined to get
dN, , 1 1. \dM, _
where the middle-surface displacements u, v, and w; the Tt ﬁ(cl + §Cz) ax A =0 (B21)

membrane straing’ €5 , antl ; the rotati@is By,

0 . . For convenience, the parameter
andf3, ; and the bending strair$ axt are func- P

tions of only the axial coordinate, x. u=c, + %Cz (B22)

Constitutie Equations is introduced such that the Sanders-Koiter equations are

The isothermal constitutive equations reduce to . . .
g given by 4 =5 and the Love-Kirchhoff equations are

given by p = 1. Donnell’s equations are given |by O.

N, ALALAEB, B, By 82 Similarly, the function
NNG ﬁlzﬁﬂﬁzﬁ% 312 EZZ EZG ysoe
X0 - 167226 7Vee; P16 P26 Pes X8 T - B
M, [ =By BLBLD.D,D, | ko [ (BLD) T =Nt gMs (B23)
Me Blz Bzz BzeiDlz D22 Dze 0 L.
M. Bis By BesiDis Do Deg o is introduced so that Eqg. (B21) becomes
- X6
where the subscripted A, B, and D terms of the matrix dT _
o ) . v X)=0
are the usual constitutive terms of classical Love-Kirch- dx ) (B24)

hoff-type laminated composite shell theory or classical . - _
laminated plate theory (e.g., see p. 198 of Ref. 18). and the corresponding boundary condition given by Eq.
(B17) becomes

Boundary Conditions =

T=T or v=v (B25)
The boundary conditions for an edge that is defined
by a constant value of the axial coordinate x are given byxtegration of Eq. (B24) yields

N,=N, or u=o (B16) T:_J'qedx+csT(x) (B26)
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where C is a constant of integration that is determinednd Eq. (B26) is expressed as

from the boundary condition given by Eq. (B25). Next,

Egs. (B3) and (B4) are combined to give

M, N, ~
dx? —ﬁ'i'qn(X)—O

The next step in the analysis is the simplification of

(B27)

‘ o
g

Vv _B

+A66 X 16 dXZ

Klﬁ%"'ﬁ‘ze —T(X):O

P

(B37)

o

Equations (B36) and (B37) are then solved%&r and

the constitutive equations. First, by using Egs. (B8) anddl‘)é to get

(B22), Eqg. (B14) is expressed as

0o — — esN(X)_'K‘leT(X)
K% = RYe (B28) Q="
By using Egs. (B23) and (B28), the constitutive equa- (RBRG—AHKGB W (K%Bu—ﬁ{m)@
. R dx?
tions are expressed as + = (B38)

NX A11A12'K‘15 Bll 8: T NN
f Ne\ = AlZAZZ'K\ZG BlZ Sg m = AuT(Xz_AE'z\I(X)
T (7| AuALAL B, \v:e f (B29) & AAA
\L MXI Bn Blz Blﬁ Dn K: A12K16 A11A26 % + (Augm_ﬁ\leBu)%a’\z’
+ - % (B39)
A11A56_A16
and
_ 0 oy B 0 Equation (B39) indicates that the circumferential dis-
M_Bl x+Bzzs+Bz><+D12Kx H H
o= Bt 8+ BaYa (B30) placement v(x) becomes uncoupled from the axial dis-
where placement u(x) and the normal displacement w(x)
whenA,;=A,=B,;=0, Wh_ic_:h implies tha_t @\: A
A=A+ H(%) % (B31) - Bys =By =Dy =0. In addition, the constitutive equa-
tion, Eq. (B29), indicates that,NN,, and M become
= B uncoupled from the torsional, shear strafia when
Au=As+ i f) 5 (B3z) o ped Tor h o
A=A,=B,=0, and thatT , that is defined by Eq.
B h\ Be . o h)? Des (B23), becomes uncoupled frofi € , aky Fur-
Aw=Act Zu(ﬁ) h TH (ﬁ) n? (B33) thermore, Eq. (B30) indicates that, Mecomes uncou-
1D pled fromyi, wherB,,=0 , which implies ,B= D,, =
B1s - BlG + u(ﬁ) Tle (834) 0.
Next, Egs. (B38) and (B39) are then substituted
_ D into Egs. (B6) and (B8), and the resulting expressions for
B.=Bx+h(f}) 2 (835)

€ andVYy , along with Egs. (B7) and (B12) are substitut-
ed into the constitutive equations, (B29). This action

The motivation for writing the constitutive equations in ., erts the strains and stress resultants in Eq. (B29) into
this form is that the matrix equation given by Eq. (B29)¢nctions of the displacement w(x). Substituting the ex-

is the only part of the of the full constitutive eq“ationsﬁ)ressions for Nand M, into Eq. (B27) yields the bend-

that appear in the strain energy density function, which : . S
is used in the present paper to determine the corresponI g boundary-layer equation that is given by
ing positive-definiteness conditions. With these simpli-
fied constitutive equations and Egs. (B6) - (B8) and

(B12), Eq. (B20) is expressed as

4
cdW AW cw=cx)

Tt T i A (B40)

A dQuip Wox dv_pg The constant coefficients are given by

11& 2R 16& dZ\N—N(X):O

11 W (836)
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1

AGGBil + Angie_ﬂmBn 16 C =y 852
C,=D,(1 B (B41) *~ R, (852)
(A11A66_A16 D11
Similarly, for the case where the second derivatives of
c.=_2p N(x) andT(x) are zero valued, Eq. (B44) becomes
2 R 12
o _ _ N(X) + 3, T (x
o| (RA-A AR+ (A A ~AA)B, Cx) =qn(x)+%af%() (853)
_ﬁ Anﬁ\ss_ﬁzls (842) ’
The desired form of the bending boundary-layer equa-
(Aquz—AZ)RG—Auﬁie—AJ\;+ZAQRBRG tion is obtained by dividing Eq. (B40) by ;Ghat is,
C,= — (B43)
RZ(A 11A es_Ale) d4W dZ\N —
G + 4SW +4Qw = P(x) (B54)
The functionC,(x) is given by where the constants S and Q are given by
C.(x) = qu(x) + C b
o g _ N =2 =2 (B55)
(BB = ARLNC) + (AR~ AALTK) 4C. 2Ra,D.e
R(Auﬁ‘%_ﬁ\is)
o o Q= 2= 1 (B56)
(Buﬁsﬁ_ﬂmgw) d 2 + (AuBle_Bu 15)72 4C1 4R282 D e
X dx 2L 116
+ — (B44)
(AnAse_Als)
The function P(x) is given by
These expressions are simplifed further by introducing - -
the following expressions P(x) = C.9 = 9(X) + AN(X) +2,T(x) (B57)
Cl Dne Razane
KIBKZS_AQKGE
A, = - - - ——— (B45) . N
(AMAZZ— A;)A%_ AAL—AAL+2A A A, for the special case when the second derivatives of
N(X) andT(x) are zero valued. The quanflye  that
a,= ~ AnAi—Aie — — (B46) appears in Egs. (B54) - (B56) is sometimes referred to,
(A11A22_A212)A55_AnAze_AzzAls+ 2A A A in some contexts, as a reduced bending stifftfess.
a,= AA-AA, (B47) Appendix C:Anisotropy-Factor Equations
6 2 \ % -2 -2 ~ K . . . H
(AnAzz_Alz)Ase_AnAze_A22A16+ 2A A A The first-order approximation of the anisotropy
factor# that is used herein is given by
I521 == (aQBll + a22812 + aQGBle) (B48) h
A=A, 1+u€1(R)] (C1)
e= 1— ;‘eeBil + Angie - ZKIGBHBlG (B49)

(Anﬁes_ﬁ‘ie)Du

By using Eqgs. (B45) - (B49), Eqgs. (B41) - (B43) are

expressed as

wheres#, is the value of Eq. (20b) wittp = 0 in the
terms with the overbars. This expression is given by

4| -2

(A 11A 2 A212)

21

A= 8t | |1——F—= (C2)
A 0
C.=Duye (B50) . LV, 3Dy €
C.= 2 by (B51) which is the anisotropy factor that corresponds to Don-
* Ra, nell’'s equations. The terms,ab,,, ande, are given by
17
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a,= Ahn—Adfw (C3) fzezAls(AzzeAn_AzzAzm)"'
(A11A22_A212)A66_A11A26_A22A216+ 2A12A16A26

A%[A o A+ AL)—2A A A ] (C15)
A 11A 66 Azle

8y, = : ; ; (C4)
(AllAZZ_Alz)ASG_AllAZS_AZZAIS+2A12A1€A26
fee = 2(A12A16_AllAZG)(AleAZZ_AlZAZG) (C16)
a2 _ A12A16_A11A26 (C5)
’ (A11A22_A212)A66_A11A26_A22A216+2A12A16A26 O = (A].ZAlG_AllAZG)(AleAZG_AleBG) (Cl?)
b, =- (aian +a,B,+ 326816) (C6) Ox = (AQA 5= AnA 28)(A11A GG_AiG) (C18)
¢,= 1— AGGBil + AnBie B 2AleBnB1s (C7) Oes = (A12A16_A11A 26) (Clg)

(AllAGG_AiG)Dll

h16 = Aleee(Alese_Azlz) + A11A26(A12A26_A16A22)
The term¢, is a first-order correction to the results that

correspond to Donnell’s equations and is given by + AwAzz(AuA 16~ AuA ze) (C20)
.= aZZDMeU(aZZe1 " alzzeo) " Zazz(bmeo_ bnel) ~ 28D, (C8) hze =—A 11A ee(A 11A22 - Azlz) + Aie(A 11A 27 2A212)
1

e \/aDuco-b.] +AAL2AAL-A AL (C21)

where
hee = 2(A11A26_A12A 16)(A 11A 22_Ai2) (C22)
o= 2(A16|311—A 112816) [Dle(A 11A66—A216) +
(A11A66—A216) Dyh

Special Cases fo#, and ¢,

(C9) Simplifications to4, and ¢, are presented below
for unbalanced and balanced, symmetric laminates and
for balanced, unsymmetric laminates, that include the

- BlG(BllAGG + AnBes) + AlG(A 1Bes* Bie)

a,,= Biefio * Bafao * Bocfos . (C10) subclasses of general antisymmetric laminates, antisym-
(Aquz—Aiz)Aes—AuAée—AzzAis+2A12A16A4 h metric cross-ply laminates, and antisymmetric angle-ply
laminates.
a,=-2 Budio* Balzo* Boddes ~ (Cl11) Unbalanced and balanced, symmetric laminates.
(AnAzz—A%z)Aee—AnA%e—AzzA%uZAQAEAZS} h For unbalanced, symmetric laminategs A0, A, Z 0,
and B, =B,,=B,,=B,;= B,s= B, = 0. For this special
A= Bihi6+ Boshas + Becles . (C].Z) case,
(A11A22—Aiz)Aee—AnAis—AzzAie*'2A12A15A25} h Im
/40 - (AnAzz—Aiz)(AuAae—Aie] (C23)

All

(Aquz_Aiz)Aes—AuAge_A22A§6+ZA 1A 1A 2
blZl == (auan + a‘122812 + a:lZGBlG + a26hD16) (C13)

which agrees with the corresponding equations given by

and Reutef, and

f16 = Aze(AzlaAzz_AnAze) +

DlG(A 1A —ApA 26) [ )
uzl(A 1A —AL|Ag

A%[AZG(AMA22+A;) —2A12A22A16] (Cl4) €=
Zh[Du(AnAee—Azle)]
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) ) -v2 0 in addition to the shear-extensional coupling terms.
—A A% —ARAT T 2A LA 16A 5 (C24) .
For this special case?o = A/ ¢, where

For balanced, symmetric laminates,; A A, = 0 in

addition to the subscripted B-matrix constitutive terms. e =1— B

For this special casg, =1 and¢, = 0. ° AD,,
Balanced, unsymmetric laminatesor balanced,

unsymmetric laminates, A= A, = 0, which yields the  which agrees with the corresponding equations given by

(C33)

following simplified expressions Reutef, and
B? B?
=1- n_ 16 _
“T T ADL ADy (C25) 0,= (A8 —A B (C34)

2A Geh\/ A 11D 11(A 11A 27 A 212)60
A 11B 12 -A 1ZB u

A= (C26)
\/A11D11(A11A22 Ade, Further simplifications can be made to Egs. (C31)
and (C32) for [0/90/.../90] antisymmetric-cross-ply-
4 7 laminate shell walls with an even number of layers that
#0= [1+A] (C27)  have identical material properties. For these laminates,
the plies are specially orthotropic and their principal ma-
B. |D. B.B terial directions are oriented at 0 deg and 90 deg to the
_2 16 716_ 11~16 _ 1666 . . . .
2 AnhD. AD. AD (C28) cylinder axes in an alternating manner. In particular, the
66 11 1~1 11 . . .
major principal axes of the odd-numbered and even-
numbered plies are aligned with the x- dhdxis, re-
- (A B _AB ) spectively, with the first ply in the stacking sequence lo-
é,= 4(1+/\) el(1+2/\)+ i i (C29) cated at the inner surface of the cylinder. Moreover, the

Auh/ AuDu(A A= AL)e, odd-numbered plies have the same thickness and the
even-numbered plies have the same thickness, but these
%wo thicknesses are, in general, different. The laminate
stiffnesses are given in Ref. 18 (see pp. 224-226) in terms
of the number of layers N, the thickness ratio M, the ratio

For the subclass of balanced, antisymmetric laminate

D,s = D,; = 0 in addition to the shear-extensional cou-
pling terms, which yields the following simplification

of the principal elastic moduk = % , forwhich 0<F

2B% '

A Dh

B, By
All A66

€= (C30) <1, and the reduced, plane-stress lamina stiffnesses.

The thickness ratio is defined by

that is applied to Eq. (C29). For the subclass of (bal- N1 N

anced) antisymmetric cross-ply Iaminate§2 BB, = M = ty ~ Z t t(— (C35)
. .y k=13, .. k=24,.

B,=Bsx=0,B,=-B,, and Q= D,, = 0 in addition

to the shear extensional coupling terms. For this special )
case = 0 and where {, denotes the thickness of themy and
1

N-1

n _ S ¢« =N
_ A.By ! h= k:;, Ty + k:; = 7(% + t(z)) (C36)
A= 0|1 (C31)

\/ ADu(ALAL—A z)eo

is the total laminate thickness. For the antisymmetric
cross-ply laminates,fand t, are the thicknesses of the
, 0-deg and 90-deg layers, respectively, and are denoted
e =1— By (C32) herein by § and §, respectively. Substituting the non-
° zero laminate stiffness expressions for this class of anti-
symmetric cross-ply laminates that are given in Ref. 18
For the subclass of balanced, antisymmetric angleinto Eqgs. (21), (C31), and (C32) yields
ply laminates, B =B,,=B,,= B, =0 and ;= D, =

where
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Table 1: Lamina properties.

Material Systems
Lamina
property* Boron- | S-glass-| Kevlar 49- IM7/ AS4/ AS4/ Boron- IM7/ P-100/
Al epoxy epoxy 5260 3502 3501-6 epoxy PETI-5 3502
E,, Msi 33 7.5 11.02 22.1 18.5 20.01 29.58 20.3% 53.%
E,, Msi 21 1.7 0.8 1.457 1.64 1.30 2.68 1.16 0.73
\% 0.23 0.25 0.34 0.258 0.30 0.30 0.23 0.29 0.3]
G, Msi 7.0 0.80 0.33 0.860 0.87 1.03 0.81 0.61 0.7¢
a, x 1¢°°F 3.2 35 -2.22 0.0125 0.25 -0.167 3.38 -0.14 -0.64
a, x 10°°F 11.0 11.0 43.89 14.91 16.2 15.6 16.88 16.8p 17.2

* The subscripts 1 and 2 denote the longitudinal (fiber) and transverse (matrix) directions of a specially orthotropietreatiaely.

Table 2: Comparison of results for specially orthotropic materials with Ref. 6.

Material Systemis | EJE, Viz 0 f::_/’é’ Pr(:;:f}s’tu o
Boron-epoxy 0.100 0.30 1.782 2.796-2.805 2.806
Glass-epoxy 0.333 0.25 1.323 3.757-3.779 3.779

Graphite-epoxy 0.250 0.25 2.516 1.984-1.987 1.987

* The subscripts 1 and 2 denote the major and minor principal directions, respectively, of theogpetiapic materials defined
in Ref. 6.

1 The quanti&(z/ is defined by Eq. (37)
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Fig. 1 Nondimensional 90%-decay length for symmetrically and unsymmetrically laminated cylinders, as a
function of laminate orthotropy.
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Fig. 2 Nondimensional 90%-decay length for symmetrically and unsymmetrically laminated cylinders, as a
function of laminate anisotropy.
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Fig. 3 Effect of lamina material properties on nondimensional orthotropy parameter for single-ply, homogeneous,
specially orthotropic laminates (0.2<v,,< 0.35).
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Fig. 4 Effect of lamina material properties on nondimensional orthotropy parameter for [(#),]. [(+9),.]. and
[(®9),]; laminates (m =1, 2, ...).
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Fig. 6 Effect of lamina material properties on nondimensional orthotropy parameter for [(/+45) ], laminates.
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Fig. 7 Effect of lamina material properties on nondimensional orthotropy parameter for quasi-isotropic laminates
and similar unbalanced laminates.
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Fig. 8 Effect of lamina material properties on nondimensional anisotropy parameter for [(@),.ls
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Fig. 9 Effect of lamina material properties on nondimensional first-order correction factor for [(4p),.]s
laminates (m =1, 2, ...).
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Fig. 10 Nondimensional 90%-decay length for [(),,], laminates made of IM7/5260 graphite-bismaleimide and
P-100/3502 pitch-epoxy material (h/R = 1/20; m =1, 2, ...).
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Fig. 11 Effect of lamina material properties on nondimensional anisotropy parameter for [(0/90/+4R.],
and [(+45,/0/90),], laminates.
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Fig. 12 Effect of lamina material properties on nondimensional anisotropy parameter for [d, laminates.
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Fig. 13 Effect of stacking sequence number on nondimensional anisotropy parameter for @], laminates
made of P-100/3502 pitch-epoxy material.
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Fig. 14 Effect of lamina material properties on nondimensional first-order correction factor for [#]; laminates.

28
American Institute of Aeronautics and Astronautics



0.1 ?

0.08 |-
. Typical lamina fiber
First-order i Stacking sequence
correction number, m = 1
factor, 0.06 ’
é. '
0.04 |-

0.02 m=3
n;ii- \\:““_
e memm et e
O T r 1 l " [ " 5 [
0 15 30 45 60 75

Fiber angle, ¢, deg

Fig. 15 Effect of stacking sequence number on nondimensional first-order correction factor for [@;]; laminates
made of P-100/3502 pitch-epoxy material.
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Fig. 16 Nondimensional 90%-decay length for [#l; laminates made of IM7/5260 graphite-bismaleimide and
P-100/3502 pitch-epoxy material (h/R = 1/20).
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Fig. 17 Effect of lamina material properties on nondimensional orthotropy parameter for [¥90,]; laminates.
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Fig. 18 Effect of lamina material properties on nondimensional anisotropy parameter for [890,]; laminates.
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Fig. 19 Nondimensional 90%-decay length for [090]; laminates made of IM7/5260 graphite-bismaleimide and
P-100/3502 pitch-epoxy material (h/R = 1/20).
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Fig. 20 Effect of lamina material properties on nondimensional orthotropy parameter for [700,]; laminates.
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Fig. 21 Effect of lamina material properties on nondimensional anisotropy parameter for [7@0,]; laminates.
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Fig. 22 Nondimensional 90%-decay length for [700,]; laminates made of IM7/5260 graphite-bismaleimide and
P-100/3502 pitch-epoxy material (h/R = 1/20).
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	a1 x 106/oF
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	-0.64
	a2 x 106/oF
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	16.83
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	17.2
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